Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 920227, 2022.
Article in English | MEDLINE | ID: covidwho-2141940

ABSTRACT

Objective: To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods: Household contacts of COVID-19 cases screened for SARS-CoV-2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS-CoV-2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results: At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1ß, IL-9, MIP-1ß and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions: Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.


Subject(s)
COVID-19 , Chemokine CXCL10 , Humans , Immunity , Interferon-alpha , Pandemics , SARS-CoV-2 , T-Lymphocytes
2.
Int J Infect Dis ; 105: 21-25, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1081433

ABSTRACT

BACKGROUND: Studies of T-cell immune responses against SARS-CoV-2 are important in understanding the immune status of individuals or populations. Here, we use a simple, cheap, and rapid whole blood stimulation assay - an Interferon-Gamma Release Assay (IGRA) - to study T-cell immunity to SARS-CoV-2 in convalescent COVID-19 patients and in unexposed healthy contacts from Quito, Ecuador. METHODS: Interferon-gamma (INF-γ) production was measured in the heparinized blood of convalescent and unexposed subjects after stimulation for 24 h with the SARS-CoV-2 Spike S1 protein, the Receptor Binding Domain (RBD) protein or the Nucleocapsid (NP) protein, respectively. The presence of IgG-RBD protein antibodies in both study groups was determined with an "in-house" ELISA. RESULTS: As measured with INF-γ production, 80% of the convalescent COVID-19 patients, all IgG-RBD seropositive, had a strong T-cell response. However, unexpectedly, 44% of unexposed healthy controls, all IgG-RBD seronegative, had a strong virus-specific T-cell response with the COVID-19 IGRA, probably because of prior exposure to common cold-causing coronaviruses or other viral or microbial antigens. CONCLUSION AND DISCUSSION: The high percentage of unexposed healthy subjects with a pre-existing immunity suggests that a part of the Ecuadorian population is likely to have SARS-CoV-2 reactive T-cells. Given that the IGRA technique is simple and can be easily scaled up for investigations where high numbers of patients are needed, this COVID-19 IGRA may serve to determine if the T-cell only response represents protective immunity to SARS-CoV-2 infection in a population-based study.


Subject(s)
COVID-19/immunology , Interferon-gamma Release Tests , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL